
OBJECT-ORIENTED THINKING

CHAPTER 26

1



Topics

2



Topics
§ The Object-Oriented Metaphor

2



Topics
§ The Object-Oriented Metaphor
§ Object-Oriented Flocks of Birds

2



Topics
§ The Object-Oriented Metaphor
§ Object-Oriented Flocks of Birds

– Boids by Craig W. Reynolds

2



Topics
§ The Object-Oriented Metaphor
§ Object-Oriented Flocks of Birds

– Boids by Craig W. Reynolds

§ Modularity

2



The Object-Oriented Metaphor

3



The Object-Oriented Metaphor
§ Consider Object-Oriented Programming as it relates 

to a flock of birds

3



The Object-Oriented Metaphor
§ Consider Object-Oriented Programming as it relates 

to a flock of birds
– For hundreds of years, the motions of bird flocks (and 

schools of fish) fascinated researchers

3



The Object-Oriented Metaphor
§ Consider Object-Oriented Programming as it relates 

to a flock of birds
– For hundreds of years, the motions of bird flocks (and 

schools of fish) fascinated researchers
• How do hundreds of individuals move in such coordinated behavior?

3



The Object-Oriented Metaphor
§ Consider Object-Oriented Programming as it relates 

to a flock of birds
– For hundreds of years, the motions of bird flocks (and 

schools of fish) fascinated researchers
• How do hundreds of individuals move in such coordinated behavior?
• Which animal "leads" the flock? How is the leader chosen?

3



The Object-Oriented Metaphor
§ Consider Object-Oriented Programming as it relates 

to a flock of birds
– For hundreds of years, the motions of bird flocks (and 

schools of fish) fascinated researchers
• How do hundreds of individuals move in such coordinated behavior?
• Which animal "leads" the flock? How is the leader chosen?

– To simulate a flock on a computer in a monolithic way, it was 
thought that a massive function would be required

3



The Object-Oriented Metaphor
§ Consider Object-Oriented Programming as it relates 

to a flock of birds
– For hundreds of years, the motions of bird flocks (and 

schools of fish) fascinated researchers
• How do hundreds of individuals move in such coordinated behavior?
• Which animal "leads" the flock? How is the leader chosen?

– To simulate a flock on a computer in a monolithic way, it was 
thought that a massive function would be required

• Track every bird's position

3



The Object-Oriented Metaphor
§ Consider Object-Oriented Programming as it relates 

to a flock of birds
– For hundreds of years, the motions of bird flocks (and 

schools of fish) fascinated researchers
• How do hundreds of individuals move in such coordinated behavior?
• Which animal "leads" the flock? How is the leader chosen?

– To simulate a flock on a computer in a monolithic way, it was 
thought that a massive function would be required

• Track every bird's position
• Make global decisions about the behavior of the flock

3



The Object-Oriented Metaphor
§ Consider Object-Oriented Programming as it relates 

to a flock of birds
– For hundreds of years, the motions of bird flocks (and 

schools of fish) fascinated researchers
• How do hundreds of individuals move in such coordinated behavior?
• Which animal "leads" the flock? How is the leader chosen?

– To simulate a flock on a computer in a monolithic way, it was 
thought that a massive function would be required

• Track every bird's position
• Make global decisions about the behavior of the flock
• Figure out how those global decisions would affect each bird

3



The Object-Oriented Metaphor
§ Consider Object-Oriented Programming as it relates 

to a flock of birds
– For hundreds of years, the motions of bird flocks (and 

schools of fish) fascinated researchers
• How do hundreds of individuals move in such coordinated behavior?
• Which animal "leads" the flock? How is the leader chosen?

– To simulate a flock on a computer in a monolithic way, it was 
thought that a massive function would be required

• Track every bird's position
• Make global decisions about the behavior of the flock
• Figure out how those global decisions would affect each bird

– But in a real flock, each bird looks at her own environment, 
goals, etc. and makes decisions

3



The Object-Oriented Metaphor
§ Consider Object-Oriented Programming as it relates 

to a flock of birds
– For hundreds of years, the motions of bird flocks (and 

schools of fish) fascinated researchers
• How do hundreds of individuals move in such coordinated behavior?
• Which animal "leads" the flock? How is the leader chosen?

– To simulate a flock on a computer in a monolithic way, it was 
thought that a massive function would be required

• Track every bird's position
• Make global decisions about the behavior of the flock
• Figure out how those global decisions would affect each bird

– But in a real flock, each bird looks at her own environment, 
goals, etc. and makes decisions

• Each bird acts as an individual based on her understanding of the 
world

3



The Object-Oriented Metaphor
§ Consider Object-Oriented Programming as it relates 

to a flock of birds
– For hundreds of years, the motions of bird flocks (and 

schools of fish) fascinated researchers
• How do hundreds of individuals move in such coordinated behavior?
• Which animal "leads" the flock? How is the leader chosen?

– To simulate a flock on a computer in a monolithic way, it was 
thought that a massive function would be required

• Track every bird's position
• Make global decisions about the behavior of the flock
• Figure out how those global decisions would affect each bird

– But in a real flock, each bird looks at her own environment, 
goals, etc. and makes decisions

• Each bird acts as an individual based on her understanding of the 
world

• This is the core concept of Object-Oriented Programming (OOP)

3



Object-Oriented Flocks of Birds

4



Object-Oriented Flocks of Birds
§ BOIDS provides another approach to flocks

4



Object-Oriented Flocks of Birds
§ BOIDS provides another approach to flocks

– "Flocks, Herds, and Schools: A Distributed Behavioral 
Model" (1987) by Craig W. Reynolds

4



Object-Oriented Flocks of Birds
§ BOIDS provides another approach to flocks

– "Flocks, Herds, and Schools: A Distributed Behavioral 
Model" (1987) by Craig W. Reynolds

– A simple, object-oriented approach to flocking behavior that 
Reynolds called "Boids"

4



Object-Oriented Flocks of Birds
§ BOIDS provides another approach to flocks

– "Flocks, Herds, and Schools: A Distributed Behavioral 
Model" (1987) by Craig W. Reynolds

– A simple, object-oriented approach to flocking behavior that 
Reynolds called "Boids"

– Boids uses three simple rules:

4



Object-Oriented Flocks of Birds
§ BOIDS provides another approach to flocks

– "Flocks, Herds, and Schools: A Distributed Behavioral 
Model" (1987) by Craig W. Reynolds

– A simple, object-oriented approach to flocking behavior that 
Reynolds called "Boids"

– Boids uses three simple rules:
• Separation

4



Object-Oriented Flocks of Birds
§ BOIDS provides another approach to flocks

– "Flocks, Herds, and Schools: A Distributed Behavioral 
Model" (1987) by Craig W. Reynolds

– A simple, object-oriented approach to flocking behavior that 
Reynolds called "Boids"

– Boids uses three simple rules:
• Separation
• Alignment

4



Object-Oriented Flocks of Birds
§ BOIDS provides another approach to flocks

– "Flocks, Herds, and Schools: A Distributed Behavioral 
Model" (1987) by Craig W. Reynolds

– A simple, object-oriented approach to flocking behavior that 
Reynolds called "Boids"

– Boids uses three simple rules:
• Separation
• Alignment
• Cohesion

4



Object-Oriented Flocks of Birds
§ Boids three rules

5Images are from Reynold's website http://www.red3d.com/cwr/boids/



Object-Oriented Flocks of Birds
§ Boids three rules

5

– Separation!
• Avoid crowding nearby flockmates

Images are from Reynold's website http://www.red3d.com/cwr/boids/



Object-Oriented Flocks of Birds
§ Boids three rules

5

– Separation!
• Avoid crowding nearby flockmates

– Alignment!
• Match heading with nearby flockmates

Images are from Reynold's website http://www.red3d.com/cwr/boids/



Object-Oriented Flocks of Birds
§ Boids three rules

5

– Separation!
• Avoid crowding nearby flockmates

– Alignment!
• Match heading with nearby flockmates

– Cohesion!
• Try to center self relative to nearby 

flockmates

Images are from Reynold's website http://www.red3d.com/cwr/boids/



Object-Oriented Flocks of Birds

6



Object-Oriented Flocks of Birds
§ These three rules create surprisingly good flocking 

behavior

6

https://www.youtube.com/watch?v=86iQiV3-3IA


Object-Oriented Flocks of Birds
§ These three rules create surprisingly good flocking 

behavior
– https://www.youtube.com/watch?v=86iQiV3-3IA

6

https://www.youtube.com/watch?v=86iQiV3-3IA


Object-Oriented Flocks of Birds
§ These three rules create surprisingly good flocking 

behavior
– https://www.youtube.com/watch?v=86iQiV3-3IA

§ In this chapter of the book, you create a simple 2D 
version of Boids that runs in Unity

6

https://www.youtube.com/watch?v=86iQiV3-3IA


Object-Oriented Flocks of Birds
§ These three rules create surprisingly good flocking 

behavior
– https://www.youtube.com/watch?v=86iQiV3-3IA

§ In this chapter of the book, you create a simple 2D 
version of Boids that runs in Unity

6

https://www.youtube.com/watch?v=86iQiV3-3IA


Modularity

7



Modularity
§ Another aspect of OOP is Modularity

7



Modularity
§ Another aspect of OOP is Modularity
§ Through modularity, each piece of code is expected 

to follow specific parameters

7



Modularity
§ Another aspect of OOP is Modularity
§ Through modularity, each piece of code is expected 

to follow specific parameters
– But the internal implementation of that code is up to the 

individual developer

7



Modularity
§ Another aspect of OOP is Modularity
§ Through modularity, each piece of code is expected 

to follow specific parameters
– But the internal implementation of that code is up to the 

individual developer

§ This enables teams to effectively collaborate on code

7



Modularity
§ Another aspect of OOP is Modularity
§ Through modularity, each piece of code is expected 

to follow specific parameters
– But the internal implementation of that code is up to the 

individual developer

§ This enables teams to effectively collaborate on code
– Each programmer receives a spec for what her part of the 

code is supposed to do

7



Modularity
§ Another aspect of OOP is Modularity
§ Through modularity, each piece of code is expected 

to follow specific parameters
– But the internal implementation of that code is up to the 

individual developer

§ This enables teams to effectively collaborate on code
– Each programmer receives a spec for what her part of the 

code is supposed to do
– That code is encapsulated into one or more classes which 

are clearly documented

7



Modularity

8



Modularity
§ Collaboration benefits of modular code:

8



Modularity
§ Collaboration benefits of modular code:

– The public fields and methods of each class are pre-
specified

8



Modularity
§ Collaboration benefits of modular code:

– The public fields and methods of each class are pre-
specified

– Other programmers can write code that will interact with 
each class without knowing the internals implementation of 
that class

8



Modularity
§ Collaboration benefits of modular code:

– The public fields and methods of each class are pre-
specified

– Other programmers can write code that will interact with 
each class without knowing the internals implementation of 
that class

– The internals of the class can be replaced without affecting 
any other code

8



Modularity
§ Collaboration benefits of modular code:

– The public fields and methods of each class are pre-
specified

– Other programmers can write code that will interact with 
each class without knowing the internals implementation of 
that class

– The internals of the class can be replaced without affecting 
any other code

§ However, top-down modularity is often difficult to 
define ahead of time in game prototypes

8



Modularity
§ Collaboration benefits of modular code:

– The public fields and methods of each class are pre-
specified

– Other programmers can write code that will interact with 
each class without knowing the internals implementation of 
that class

– The internals of the class can be replaced without affecting 
any other code

§ However, top-down modularity is often difficult to 
define ahead of time in game prototypes

– Because the spec for a prototype changes rapidly

8



Modularity
§ Collaboration benefits of modular code:

– The public fields and methods of each class are pre-
specified

– Other programmers can write code that will interact with 
each class without knowing the internals implementation of 
that class

– The internals of the class can be replaced without affecting 
any other code

§ However, top-down modularity is often difficult to 
define ahead of time in game prototypes

– Because the spec for a prototype changes rapidly
– Instead of top-down, just think bottom-up about making 

your code easily reusable in later projects

8



Modularity
§ Collaboration benefits of modular code:

– The public fields and methods of each class are pre-
specified

– Other programmers can write code that will interact with 
each class without knowing the internals implementation of 
that class

– The internals of the class can be replaced without affecting 
any other code

§ However, top-down modularity is often difficult to 
define ahead of time in game prototypes

– Because the spec for a prototype changes rapidly
– Instead of top-down, just think bottom-up about making 

your code easily reusable in later projects
– Make each reusable element of your code a module

8



Chapter 26 – Summary

9



Chapter 26 – Summary

9

§ In OOP, each instance of a class thinks for itself



Chapter 26 – Summary

9

§ In OOP, each instance of a class thinks for itself
– Rather than all being controlled by a single function



Chapter 26 – Summary

9

§ In OOP, each instance of a class thinks for itself
– Rather than all being controlled by a single function

§ Through OOP, simple rules can be embedded into each 
class member



Chapter 26 – Summary

9

§ In OOP, each instance of a class thinks for itself
– Rather than all being controlled by a single function

§ Through OOP, simple rules can be embedded into each 
class member

§ From these simple rules can emerge complex, 
interesting behaviors



Chapter 26 – Summary

9

§ In OOP, each instance of a class thinks for itself
– Rather than all being controlled by a single function

§ Through OOP, simple rules can be embedded into each 
class member

§ From these simple rules can emerge complex, 
interesting behaviors

§ Modular code can help programming teams collaborate



Chapter 26 – Summary

9

§ In OOP, each instance of a class thinks for itself
– Rather than all being controlled by a single function

§ Through OOP, simple rules can be embedded into each 
class member

§ From these simple rules can emerge complex, 
interesting behaviors

§ Modular code can help programming teams collaborate

§ Next Chapter: The Agile Mentality



Chapter 26 – Summary

9

§ In OOP, each instance of a class thinks for itself
– Rather than all being controlled by a single function

§ Through OOP, simple rules can be embedded into each 
class member

§ From these simple rules can emerge complex, 
interesting behaviors

§ Modular code can help programming teams collaborate

§ Next Chapter: The Agile Mentality
– Learn about how to approach small-team management



Chapter 26 – Summary

9

§ In OOP, each instance of a class thinks for itself
– Rather than all being controlled by a single function

§ Through OOP, simple rules can be embedded into each 
class member

§ From these simple rules can emerge complex, 
interesting behaviors

§ Modular code can help programming teams collaborate

§ Next Chapter: The Agile Mentality
– Learn about how to approach small-team management
– Learn to use burndown charts and scrum, which have had 

tremendous success on small, creative group projects


